/* USER CODE BEGIN Header /
/*
- @file : main.c
- @brief : Main program body
- @attention
- Copyright (c) 2023 STMicroelectronics.
- All rights reserved.
- This software is licensed under terms that can be found in the LICENSE file
- in the root directory of this software component.
- If no LICENSE file comes with this software, it is provided AS-IS.
/
/ USER CODE END Header /
/ Includes ------------------------------------------------------------------*/
#include “main.h”
#include “cmsis_os.h”
/* Private includes ----------------------------------------------------------/
/ USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------/
/ USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------/
/ USER CODE BEGIN PD /
/ USER CODE END PD */
/* Private macro -------------------------------------------------------------/
/ USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart1;
UART_HandleTypeDef huart2;
/* Definitions for test1 /
osThreadId_t test1Handle;
const osThreadAttr_t test1_attributes = {
.name = “test1”,
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityAboveNormal,
};
/ Definitions for giris_testi /
osThreadId_t giris_testiHandle;
const osThreadAttr_t giris_testi_attributes = {
.name = “giris_testi”,
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityNormal,
};
/ Definitions for output /
osThreadId_t outputHandle;
const osThreadAttr_t output_attributes = {
.name = “output”,
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityLow,
};
/ USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_USART2_UART_Init(void);
void led_testi(void *argument);
void test2(void *argument);
void test3(void *argument);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------/
/ USER CODE BEGIN 0 */
include “controller.h”
/* USER CODE END 0 */
/**
- @brief The application entry point.
- @retval int
/
int main(void)
{
/ USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals /
MX_GPIO_Init();
MX_USART1_UART_Init();
MX_USART2_UART_Init();
/ USER CODE BEGIN 2 */
/* USER CODE END 2 */
/* Init scheduler /
osKernelInitialize();
/ USER CODE BEGIN Header /
/*
- @file : main.c
- @brief : Main program body
- @attention
- Copyright (c) 2023 STMicroelectronics.
- All rights reserved.
- This software is licensed under terms that can be found in the LICENSE file
- in the root directory of this software component.
- If no LICENSE file comes with this software, it is provided AS-IS.
/
/ USER CODE END Header /
/*
-
@}
/
/*
-
@}
*/
/* Start scheduler */
osKernelStart();
/* We should never get here as control is now taken by the scheduler /
/ Infinite loop /
/ USER CODE BEGIN WHILE /
while (1)
{
/ USER CODE END WHILE */
/* USER CODE BEGIN 3 /
}
/ USER CODE END 3 */
}
/**
- @brief System Clock Configuration
- @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
- in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 50;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV2;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
HAL_RCC_MCOConfig(RCC_MCO1, RCC_MCO1SOURCE_HSI, RCC_MCODIV_1);
}
/**
- @brief USART1 Initialization Function
- @param None
- @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 /
huart1.Instance = USART1;
huart1.Init.BaudRate = 9600;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/ USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
- @brief USART2 Initialization Function
- @param None
- @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 /
huart2.Instance = USART2;
huart2.Init.BaudRate = 9600;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/ USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
- @brief GPIO Initialization Function
- @param None
- @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, LEDA_Pin|LEDB_Pin|LEDD_Pin|LEDE_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOC, Birler_Pin|Y_zler_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, LEDF_Pin|LEDG_Pin|LEDDP_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOE, Onlar_Pin|GPIO_PIN_8, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOD, LED1_Pin|LED2_Pin|LED3_Pin|LED4_Pin
|LED5_Pin|LED6_Pin, GPIO_PIN_RESET);
/*Configure GPIO pins : LEDA_Pin LEDB_Pin LEDD_Pin LEDE_Pin */
GPIO_InitStruct.Pin = LEDA_Pin|LEDB_Pin|LEDD_Pin|LEDE_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : Birler_Pin Y_zler_Pin */
GPIO_InitStruct.Pin = Birler_Pin|Y_zler_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pins : LEDF_Pin LEDG_Pin LEDDP_Pin */
GPIO_InitStruct.Pin = LEDF_Pin|LEDG_Pin|LEDDP_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : Onlar_Pin PE8 */
GPIO_InitStruct.Pin = Onlar_Pin|GPIO_PIN_8;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
/*Configure GPIO pins : LED1_Pin LED2_Pin LED3_Pin LED4_Pin
LED5_Pin LED6_Pin */
GPIO_InitStruct.Pin = LED1_Pin|LED2_Pin|LED3_Pin|LED4_Pin
|LED5_Pin|LED6_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/*Configure GPIO pins : BUTON_DEC_Pin BUTON_OK_Pin BUTON_INC_Pin */
GPIO_InitStruct.Pin = BUTON_DEC_Pin|BUTON_OK_Pin|BUTON_INC_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pin : PA8 */
GPIO_InitStruct.Pin = GPIO_PIN_8;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF0_MCO;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/* USER CODE BEGIN Header_led_testi /
/*
- @brief Function implementing the test1 thread.
- @param argument: Not used
- @retval None
/
/ USER CODE END Header_led_testi */
void led_testi(void argument)
{
/ USER CODE BEGIN 5 /
/ Infinite loop /
for(;
{
osDelay(1);
}
/ USER CODE END 5 */
}
/* USER CODE BEGIN Header_test2 /
/*
- @brief Function implementing the giris_testi thread.
- @param argument: Not used
- @retval None
/
/ USER CODE END Header_test2 */
void test2(void argument)
{
/ USER CODE BEGIN test2 /
/ Infinite loop /
for(;
{
osDelay(1);
}
/ USER CODE END test2 */
}
/* USER CODE BEGIN Header_test3 /
/*
- @brief Function implementing the output thread.
- @param argument: Not used
- @retval None
/
/ USER CODE END Header_test3 */
void test3(void argument)
{
/ USER CODE BEGIN test3 /
/ Infinite loop /
for(;
{
osDelay(1);
}
/ USER CODE END test3 */
}
/**
- @brief Period elapsed callback in non blocking mode
- @note This function is called when TIM13 interrupt took place, inside
- HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
- a global variable “uwTick” used as application time base.
- @param htim : TIM handle
- @retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef htim)
{
/ USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 /
if (htim->Instance == TIM13) {
HAL_IncTick();
}
/ USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 1 */
}
/**
- @brief This function is executed in case of error occurrence.
- @retval None
/
void Error_Handler(void)
{
/ USER CODE BEGIN Error_Handler_Debug /
/ User can add his own implementation to report the HAL error return state /
__disable_irq();
while (1)
{
}
/ USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**