Can I implement SMP with Cortex-R5F dual core in zynqultraScale+ mpsoc?

It seems that the port file you are using comes from Xilinx. Can you look up the asserting line in the source file? Can you also share the port.c file?

Yes, I will share it with you.

==========================================================================/*
 * FreeRTOS Kernel V10.4.6
 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates.  All Rights Reserved.
 * Copyright (C) 2014 - 2021 Xilinx, Inc. All rights reserved.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy of
 * this software and associated documentation files (the "Software"), to deal in
 * the Software without restriction, including without limitation the rights to
 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
 * the Software, and to permit persons to whom the Software is furnished to do so,
 * subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * https://www.FreeRTOS.org
 * https://github.com/FreeRTOS
 *
 */

/* Standard includes. */
#include <stdlib.h>

/* Scheduler includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "xpseudo_asm.h"

/* Xilinx includes. */
#include "xscugic.h"
#ifdef XPAR_XILTIMER_ENABLED
#include "bspconfig.h"
#include "xinterrupt_wrap.h"
#endif

#ifndef configINTERRUPT_CONTROLLER_BASE_ADDRESS
	#error configINTERRUPT_CONTROLLER_BASE_ADDRESS must be defined.  See https://www.FreeRTOS.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors.html
#endif

#ifndef configINTERRUPT_CONTROLLER_CPU_INTERFACE_OFFSET
	#error configINTERRUPT_CONTROLLER_CPU_INTERFACE_OFFSET must be defined.  See https://www.FreeRTOS.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors.html
#endif

#ifndef configUNIQUE_INTERRUPT_PRIORITIES
	#error configUNIQUE_INTERRUPT_PRIORITIES must be defined.  See https://www.FreeRTOS.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors.html
#endif

#ifndef configSETUP_TICK_INTERRUPT
	#error configSETUP_TICK_INTERRUPT() must be defined.  See https://www.FreeRTOS.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors.html
#endif /* configSETUP_TICK_INTERRUPT */

#ifndef configMAX_API_CALL_INTERRUPT_PRIORITY
	#error configMAX_API_CALL_INTERRUPT_PRIORITY must be defined.  See https://www.FreeRTOS.org/Using-FreeRTOS-on-Cortex-A-Embedded-Processors.html
#endif

#if configMAX_API_CALL_INTERRUPT_PRIORITY == 0
	#error configMAX_API_CALL_INTERRUPT_PRIORITY must not be set to 0
#endif

#if configMAX_API_CALL_INTERRUPT_PRIORITY > configUNIQUE_INTERRUPT_PRIORITIES
	#error configMAX_API_CALL_INTERRUPT_PRIORITY must be less than or equal to configUNIQUE_INTERRUPT_PRIORITIES as the lower the numeric priority value the higher the logical interrupt priority
#endif

#if configUSE_PORT_OPTIMISED_TASK_SELECTION == 1
	/* Check the configuration. */
	#if( configMAX_PRIORITIES > 32 )
		#error configUSE_PORT_OPTIMISED_TASK_SELECTION can only be set to 1 when configMAX_PRIORITIES is less than or equal to 32.  It is very rare that a system requires more than 10 to 15 difference priorities as tasks that share a priority will time slice.
	#endif
#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */

/* In case security extensions are implemented. */
#if configMAX_API_CALL_INTERRUPT_PRIORITY <= ( configUNIQUE_INTERRUPT_PRIORITIES / 2 )
	#error configMAX_API_CALL_INTERRUPT_PRIORITY must be greater than ( configUNIQUE_INTERRUPT_PRIORITIES / 2 )
#endif

/* Some vendor specific files default configCLEAR_TICK_INTERRUPT() in
portmacro.h. */
#ifndef configCLEAR_TICK_INTERRUPT
	#define configCLEAR_TICK_INTERRUPT()
#endif

/* A critical section is exited when the critical section nesting count reaches
this value. */
#define portNO_CRITICAL_NESTING			( ( size_t ) 0 )

/* In all GICs 255 can be written to the priority mask register to unmask all
(but the lowest) interrupt priority. */
#define portUNMASK_VALUE				( 0xFFUL )

/* Tasks are not created with a floating point context, but can be given a
floating point context after they have been created.  A variable is stored as
part of the tasks context that holds portNO_FLOATING_POINT_CONTEXT if the task
does not have an FPU context, or any other value if the task does have an FPU
context. */
#define portNO_FLOATING_POINT_CONTEXT	( ( StackType_t ) 0 )

/* Constants required to setup the initial task context. */
#define portSP_ELx						( ( StackType_t ) 0x01 )
#define portSP_EL0						( ( StackType_t ) 0x00 )

#if EL1_NONSECURE
	#define portEL1						( ( StackType_t ) 0x04 )
	#define portINITIAL_PSTATE				( portEL1 | portSP_EL0 )
#else
	#define portEL3						( ( StackType_t ) 0x0c )
	/* At the time of writing, the BSP only supports EL3. */
	#define portINITIAL_PSTATE			( portEL3 | portSP_EL0 )
#endif


/* Used by portASSERT_IF_INTERRUPT_PRIORITY_INVALID() when ensuring the binary
point is zero. */
#define portBINARY_POINT_BITS			( ( uint8_t ) 0x03 )

/* Masks all bits in the APSR other than the mode bits. */
#define portAPSR_MODE_BITS_MASK			( 0x0C )

/* The I bit in the DAIF bits. */
#define portDAIF_I						( 0x80 )

#if defined (GICv2)
/* Macro to unmask all interrupt priorities. */
#define portCLEAR_INTERRUPT_MASK()									\
{																	\
	portDISABLE_INTERRUPTS();										\
	portICCPMR_PRIORITY_MASK_REGISTER = portUNMASK_VALUE;			\
	__asm volatile (	"DSB SY		\n"								\
						"ISB SY		\n" );							\
	portENABLE_INTERRUPTS();										\
}
#else
#define portCLEAR_INTERRUPT_MASK()									\
{																	\
	portDISABLE_INTERRUPTS();										\
	mtcp(S3_0_C4_C6_0, portUNMASK_VALUE);							\
	__asm volatile (	"DSB SY		\n"								\
						"ISB SY		\n" );							\
	portENABLE_INTERRUPTS();										\
}
#endif

/* Hardware specifics used when sanity checking the configuration. */
#define portINTERRUPT_PRIORITY_REGISTER_OFFSET		0x400UL
#define portMAX_8_BIT_VALUE							( ( uint8_t ) 0xff )
#define portBIT_0_SET								( ( uint8_t ) 0x01 )

/* Let the user override the pre-loading of the initial LR with the address of
prvTaskExitError() in case is messes up unwinding of the stack in the
debugger. */
#define portTASK_RETURN_ADDRESS	configTASK_RETURN_ADDRESS

/*-----------------------------------------------------------*/

/*
 * Starts the first task executing.  This function is necessarily written in
 * assembly code so is implemented in portASM.s.
 */
extern void vPortRestoreTaskContext( void );

/*
 * Used to catch tasks that attempt to return from their implementing function.
 */
static void prvTaskExitError( void );
/*-----------------------------------------------------------*/

/* A variable is used to keep track of the critical section nesting.  This
variable has to be stored as part of the task context and must be initialised to
a non zero value to ensure interrupts don't inadvertently become unmasked before
the scheduler starts.  As it is stored as part of the task context it will
automatically be set to 0 when the first task is started. */
volatile uint64_t ullCriticalNesting = 9999ULL;

/*
 * The instance of the interrupt controller used by this port.  This is required
 * by the Xilinx library API functions.
 */
#ifndef XPAR_XILTIMER_ENABLED
extern XScuGic xInterruptController;
#else
uintptr_t IntrControllerAddr = configINTERRUPT_CONTROLLER_BASE_ADDRESS;
#endif

/* Saved as part of the task context.  If ullPortTaskHasFPUContext is non-zero
then floating point context must be saved and restored for the task. */
uint64_t ullPortTaskHasFPUContext = pdFALSE;

/* Set to 1 to pend a context switch from an ISR. */
uint64_t ullPortYieldRequired = pdFALSE;

/* Counts the interrupt nesting depth.  A context switch is only performed if
if the nesting depth is 0. */
uint64_t ullPortInterruptNesting = 0;
/*
 * Global counter used for calculation of run time statistics of tasks.
 * Defined only when the relevant option is turned on
 */
#if (configGENERATE_RUN_TIME_STATS==1)
volatile uint32_t ulHighFrequencyTimerTicks;
#endif

/* The space on the stack required to hold the FPU registers.  This is 32 128-bit
 * registers, that means (64 * 8) 64 double words */
#define portFPU_REGISTER_DOUBLE_WORDS ( 64 )

#if defined(GICv2)
/* Used in the ASM code. */
__attribute__(( used )) const uint64_t ullICCEOIR = portICCEOIR_END_OF_INTERRUPT_REGISTER_ADDRESS;
__attribute__(( used )) const uint64_t ullICCIAR = portICCIAR_INTERRUPT_ACKNOWLEDGE_REGISTER_ADDRESS;
__attribute__(( used )) const uint64_t ullICCPMR = portICCPMR_PRIORITY_MASK_REGISTER_ADDRESS;
#endif
__attribute__(( used )) const uint64_t ullMaxAPIPriorityMask = ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT );

/*-----------------------------------------------------------*/
/*
 * Initialise the interrupt controller instance.
 */
static int32_t prvInitialiseInterruptController( void );

/* Ensure the interrupt controller instance variable is initialised before it is
 * used, and that the initialisation only happens once.
 */
static int32_t prvEnsureInterruptControllerIsInitialised( void );

static int32_t lInterruptControllerInitialised = pdFALSE;

/*
 * See header file for description.
 */
StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters )
{
	/* Setup the initial stack of the task.  The stack is set exactly as
	expected by the portRESTORE_CONTEXT() macro. */

	/* First all the general purpose registers. */
	pxTopOfStack--;
	*pxTopOfStack = 0x0101010101010101ULL;	/* R1 */
	pxTopOfStack--;
	*pxTopOfStack = ( StackType_t ) pvParameters; /* R0 */
	pxTopOfStack--;
	*pxTopOfStack = 0x0303030303030303ULL;	/* R3 */
	pxTopOfStack--;
	*pxTopOfStack = 0x0202020202020202ULL;	/* R2 */
	pxTopOfStack--;
	*pxTopOfStack = 0x0505050505050505ULL;	/* R5 */
	pxTopOfStack--;
	*pxTopOfStack = 0x0404040404040404ULL;	/* R4 */
	pxTopOfStack--;
	*pxTopOfStack = 0x0707070707070707ULL;	/* R7 */
	pxTopOfStack--;
	*pxTopOfStack = 0x0606060606060606ULL;	/* R6 */
	pxTopOfStack--;
	*pxTopOfStack = 0x0909090909090909ULL;	/* R9 */
	pxTopOfStack--;
	*pxTopOfStack = 0x0808080808080808ULL;	/* R8 */
	pxTopOfStack--;
	*pxTopOfStack = 0x1111111111111111ULL;	/* R11 */
	pxTopOfStack--;
	*pxTopOfStack = 0x1010101010101010ULL;	/* R10 */
	pxTopOfStack--;
	*pxTopOfStack = 0x1313131313131313ULL;	/* R13 */
	pxTopOfStack--;
	*pxTopOfStack = 0x1212121212121212ULL;	/* R12 */
	pxTopOfStack--;
	*pxTopOfStack = 0x1515151515151515ULL;	/* R15 */
	pxTopOfStack--;
	*pxTopOfStack = 0x1414141414141414ULL;	/* R14 */
	pxTopOfStack--;
	*pxTopOfStack = 0x1717171717171717ULL;	/* R17 */
	pxTopOfStack--;
	*pxTopOfStack = 0x1616161616161616ULL;	/* R16 */
	pxTopOfStack--;
	*pxTopOfStack = 0x1919191919191919ULL;	/* R19 */
	pxTopOfStack--;
	*pxTopOfStack = 0x1818181818181818ULL;	/* R18 */
	pxTopOfStack--;
	*pxTopOfStack = 0x2121212121212121ULL;	/* R21 */
	pxTopOfStack--;
	*pxTopOfStack = 0x2020202020202020ULL;	/* R20 */
	pxTopOfStack--;
	*pxTopOfStack = 0x2323232323232323ULL;	/* R23 */
	pxTopOfStack--;
	*pxTopOfStack = 0x2222222222222222ULL;	/* R22 */
	pxTopOfStack--;
	*pxTopOfStack = 0x2525252525252525ULL;	/* R25 */
	pxTopOfStack--;
	*pxTopOfStack = 0x2424242424242424ULL;	/* R24 */
	pxTopOfStack--;
	*pxTopOfStack = 0x2727272727272727ULL;	/* R27 */
	pxTopOfStack--;
	*pxTopOfStack = 0x2626262626262626ULL;	/* R26 */
	pxTopOfStack--;
	*pxTopOfStack = 0x2929292929292929ULL;	/* R29 */
	pxTopOfStack--;
	*pxTopOfStack = 0x2828282828282828ULL;	/* R28 */
	pxTopOfStack--;
	*pxTopOfStack = ( StackType_t ) 0x00;	/* XZR - has no effect, used so there are an even number of registers. */
	pxTopOfStack--;
	*pxTopOfStack = ( StackType_t ) portTASK_RETURN_ADDRESS;	/* R30 - procedure call link register. */
	pxTopOfStack--;

	*pxTopOfStack = portINITIAL_PSTATE;
	pxTopOfStack--;

	*pxTopOfStack = ( StackType_t ) pxCode; /* Exception return address. */
	pxTopOfStack--;
	#if( configUSE_TASK_FPU_SUPPORT == 1 )
	{
	/* The task will start with a critical nesting count of 0 as interrupts are
		enabled. */
	*pxTopOfStack = portNO_CRITICAL_NESTING;
	/* The task will start without a floating point context.  A task that uses
	the floating point hardware must call vPortTaskUsesFPU() before executing
	any floating point instructions. */
	 pxTopOfStack--;
	*pxTopOfStack = portNO_FLOATING_POINT_CONTEXT;
	}
	#elif( configUSE_TASK_FPU_SUPPORT == 2 )
	{
		/* The task will start with a floating point context.  Leave enough
		 * space for the registers - and ensure they are initialised to 0. */
		pxTopOfStack -= (portFPU_REGISTER_DOUBLE_WORDS-1);
		memset( pxTopOfStack, 0x00, portFPU_REGISTER_DOUBLE_WORDS * sizeof( StackType_t ) );

		/* The task will start with a critical nesting count of 0 as interrupts are
			enabled. */
		pxTopOfStack--;
		*pxTopOfStack = portNO_CRITICAL_NESTING;
		pxTopOfStack--;
		*pxTopOfStack = pdTRUE;
		ullPortTaskHasFPUContext = pdTRUE;
	}
	#else
	{
		#error Invalid configUSE_TASK_FPU_SUPPORT setting - configUSE_TASK_FPU_SUPPORT must be set to 1, 2, or left undefined.
	}
	#endif

	return pxTopOfStack;
}
/*-----------------------------------------------------------*/

#ifndef XPAR_XILTIMER_ENABLED
BaseType_t xPortInstallInterruptHandler( uint8_t ucInterruptID, XInterruptHandler pxHandler, void *pvCallBackRef )
#else
BaseType_t xPortInstallInterruptHandler( uint16_t ucInterruptID, XInterruptHandler pxHandler, void *pvCallBackRef )
#endif
{
int32_t lReturn;

	/* An API function is provided to install an interrupt handler */
	lReturn = prvEnsureInterruptControllerIsInitialised();
	if( lReturn == pdPASS )
	{
#ifndef XPAR_XILTIMER_ENABLED
		lReturn = XScuGic_Connect( &xInterruptController, ucInterruptID, pxHandler, pvCallBackRef );
#else
		lReturn = XConnectToInterruptCntrl(ucInterruptID, pxHandler, pvCallBackRef, IntrControllerAddr);
#endif
	}
	if( lReturn == XST_SUCCESS )
	{
		lReturn = pdPASS;
	}
	configASSERT( lReturn == pdPASS );

	return lReturn;
}
/*-----------------------------------------------------------*/

static int32_t prvEnsureInterruptControllerIsInitialised( void )
{
int32_t lReturn;

	/* Ensure the interrupt controller instance variable is initialised before
	it is used, and that the initialisation only happens once. */
	if( lInterruptControllerInitialised != pdTRUE )
	{
		lReturn = prvInitialiseInterruptController();

		if( lReturn == pdPASS )
		{
			lInterruptControllerInitialised = pdTRUE;
		}
	}
	else
	{
		lReturn = pdPASS;
	}

	return lReturn;
}
/*-----------------------------------------------------------*/

static int32_t prvInitialiseInterruptController( void )
{
#ifndef XPAR_XILTIMER_ENABLED
BaseType_t xStatus;
XScuGic_Config *pxGICConfig;

	/* Initialize the interrupt controller driver. */
	pxGICConfig = XScuGic_LookupConfig( configINTERRUPT_CONTROLLER_DEVICE_ID );
	xStatus = XScuGic_CfgInitialize( &xInterruptController, pxGICConfig, pxGICConfig->CpuBaseAddress );
	/* Connect the interrupt controller interrupt handler to the hardware
	interrupt handling logic in the ARM processor. */
	Xil_ExceptionRegisterHandler( XIL_EXCEPTION_ID_IRQ_INT,
								( Xil_ExceptionHandler ) XScuGic_InterruptHandler,
								&xInterruptController);
	/* Enable interrupts in the ARM. */
	Xil_ExceptionEnable();
#else
int xStatus;
xStatus = XConfigInterruptCntrl(IntrControllerAddr);
#endif
	if( xStatus == XST_SUCCESS )
	{
		xStatus = pdPASS;
#ifdef XPAR_XILTIMER_ENABLED
		XRegisterInterruptHandler(NULL, IntrControllerAddr);
		Xil_ExceptionInit();
		Xil_ExceptionEnable();
#endif
	}
	else
	{
		xStatus = pdFAIL;
	}
#ifndef XPAR_XILTIMER_ENABLED
	configASSERT( xStatus == pdPASS );
#endif

	return xStatus;
}
/*-----------------------------------------------------------*/

#ifndef XPAR_XILTIMER_ENABLED
void vPortEnableInterrupt( uint8_t ucInterruptID )
#else
void vPortEnableInterrupt( uint16_t ucInterruptID )
#endif
{
int32_t lReturn;

	/* An API function is provided to enable an interrupt in the interrupt
	controller. */
	lReturn = prvEnsureInterruptControllerIsInitialised();
	if( lReturn == pdPASS )
	{
#ifndef XPAR_XILTIMER_ENABLED
		XScuGic_Enable( &xInterruptController, ucInterruptID );
#else
		XEnableIntrId(ucInterruptID, IntrControllerAddr);
#endif
	}
	configASSERT( lReturn );
}
/*-----------------------------------------------------------*/

#ifndef XPAR_XILTIMER_ENABLED
void vPortDisableInterrupt( uint8_t ucInterruptID )
#else
void vPortDisableInterrupt( uint16_t ucInterruptID )
#endif
{
int32_t lReturn;

	/* An API function is provided to disable an interrupt in the interrupt
	controller. */
	lReturn = prvEnsureInterruptControllerIsInitialised();
	if( lReturn == pdPASS )
	{
#ifndef XPAR_XILTIMER_ENABLED
		XScuGic_Disable( &xInterruptController, ucInterruptID );
#else
		XDisableIntrId(ucInterruptID, IntrControllerAddr);
#endif
	}
	configASSERT( lReturn );
}
/*-----------------------------------------------------------*/

BaseType_t xPortStartScheduler( void )
{
uint32_t ulAPSR;
#if defined(GICv3)
uint32_t ulBpr;
#endif

	prvEnsureInterruptControllerIsInitialised();

	#if( configASSERT_DEFINED == 1 )
	{
		volatile uint32_t ulOriginalPriority;
#if defined(GICv2)
		volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( configINTERRUPT_CONTROLLER_BASE_ADDRESS + portINTERRUPT_PRIORITY_REGISTER_OFFSET );
#else
		volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( configINTERRUPT_CONTROLLER_BASE_ADDRESS + 0x420 );
#endif
		volatile uint8_t ucMaxPriorityValue;

		/* Determine how many priority bits are implemented in the GIC.

		Save the interrupt priority value that is about to be clobbered. */
		ulOriginalPriority = *pucFirstUserPriorityRegister;

		/* Determine the number of priority bits available.  First write to
		all possible bits. */
		*pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE;

		/* Read the value back to see how many bits stuck. */
		ucMaxPriorityValue = *pucFirstUserPriorityRegister;

		/* Shift to the least significant bits. */
		while( ( ucMaxPriorityValue & portBIT_0_SET ) != portBIT_0_SET )
		{
			ucMaxPriorityValue >>= ( uint8_t ) 0x01;
		}

		/* Sanity check configUNIQUE_INTERRUPT_PRIORITIES matches the read
		value. */

		configASSERT( ucMaxPriorityValue >= portLOWEST_INTERRUPT_PRIORITY );


		/* Restore the clobbered interrupt priority register to its original
		value. */
		*pucFirstUserPriorityRegister = ulOriginalPriority;
	}
	#endif /* conifgASSERT_DEFINED */

	/* At the time of writing, the BSP only supports EL3. */
	__asm volatile ( "MRS %0, CurrentEL" : "=r" ( ulAPSR ) );
	ulAPSR &= portAPSR_MODE_BITS_MASK;

#if EL1_NONSECURE
	#warning Building for execution as a guest under XEN. THIS IS NOT A FULLY TESTED PATH.
	configASSERT( ulAPSR == portEL1 );
	if( ulAPSR == portEL1 )
#else
	configASSERT( ulAPSR == portEL3 );
	if( ulAPSR == portEL3 )
#endif
	{
		/* Only continue if the binary point value is set to its lowest possible
		setting.  See the comments in vPortValidateInterruptPriority() below for
		more information. */
#if defined(GICv2)
		configASSERT( ( portICCBPR_BINARY_POINT_REGISTER & portBINARY_POINT_BITS ) <= portMAX_BINARY_POINT_VALUE );

		if( ( portICCBPR_BINARY_POINT_REGISTER & portBINARY_POINT_BITS ) <= portMAX_BINARY_POINT_VALUE )
#else
		ulBpr = mfcp(S3_0_C12_C8_3);
		configASSERT( ( ulBpr & portBINARY_POINT_BITS ) <= portMAX_BINARY_POINT_VALUE );

		if( ( ulBpr & portBINARY_POINT_BITS ) <= portMAX_BINARY_POINT_VALUE )
#endif
		{
			/* Interrupts are turned off in the CPU itself to ensure a tick does
			not execute	while the scheduler is being started.  Interrupts are
			automatically turned back on in the CPU when the first task starts
			executing. */
			portDISABLE_INTERRUPTS();

			/* Start the timer that generates the tick ISR. */
			configSETUP_TICK_INTERRUPT();

			/* Start the first task executing. */
			vPortRestoreTaskContext();
		}
	}

	return 0;
}
/*-----------------------------------------------------------*/

void vPortEndScheduler( void )
{
	/* Not implemented in ports where there is nothing to return to.
	Artificially force an assert. */
	configASSERT( ullCriticalNesting == 1000ULL );
}
/*-----------------------------------------------------------*/

void vPortEnterCritical( void )
{
	/* Mask interrupts up to the max syscall interrupt priority. */
	uxPortSetInterruptMask();

	/* Now interrupts are disabled ullCriticalNesting can be accessed
	directly.  Increment ullCriticalNesting to keep a count of how many times
	portENTER_CRITICAL() has been called. */
	ullCriticalNesting++;

	/* This is not the interrupt safe version of the enter critical function so
	assert() if it is being called from an interrupt context.  Only API
	functions that end in "FromISR" can be used in an interrupt.  Only assert if
	the critical nesting count is 1 to protect against recursive calls if the
	assert function also uses a critical section. */
	if( ullCriticalNesting == 1ULL )
	{
		configASSERT( ullPortInterruptNesting == 0 );
	}
}
/*-----------------------------------------------------------*/

void vPortExitCritical( void )
{
	if( ullCriticalNesting > portNO_CRITICAL_NESTING )
	{
		/* Decrement the nesting count as the critical section is being
		exited. */
		ullCriticalNesting--;

		/* If the nesting level has reached zero then all interrupt
		priorities must be re-enabled. */
		if( ullCriticalNesting == portNO_CRITICAL_NESTING )
		{
			/* Critical nesting has reached zero so all interrupt priorities
			should be unmasked. */
			portCLEAR_INTERRUPT_MASK();
		}
	}
}
/*-----------------------------------------------------------*/

void FreeRTOS_Tick_Handler( void )
{
#if defined(GICv3)
	unsigned int ulRpr;
#endif

	/*
	 * The Xilinx implementation of generating run time task stats uses the same timer used for generating
	 * FreeRTOS ticks. In case user decides to generate run time stats the tick handler is called more
	 * frequently (10 times faster). The timer/tick handler uses logic to handle the same. It handles
	 * the FreeRTOS tick once per 10 interrupts.
	 * For handling generation of run time stats, it increments a pre-defined counter every time the
	 * interrupt handler executes.
	 */
#if (configGENERATE_RUN_TIME_STATS == 1)
	ulHighFrequencyTimerTicks++;
	if (!(ulHighFrequencyTimerTicks % 10))
#endif
	{

		/* Must be the lowest possible priority. */
#if !defined( QEMU )
		{
#if defined(GICv2)
			configASSERT( portICCRPR_RUNNING_PRIORITY_REGISTER == ( uint32_t ) ( portLOWEST_USABLE_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ) );
#else
			ulRpr = mfcp(S3_0_C12_C11_3);
			configASSERT( ulRpr == ( uint32_t ) ( portLOWEST_USABLE_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ) );
#endif
		}
#endif

	/* Interrupts should not be enabled before this point. */
#if( configASSERT_DEFINED == 1 )
		{
			uint32_t ulMaskBits;

			__asm volatile( "mrs %0, daif" : "=r"( ulMaskBits ) :: "memory" );
			configASSERT( ( ulMaskBits & portDAIF_I ) != 0 );
		}
#endif /* configASSERT_DEFINED */
	/* Set interrupt mask before altering scheduler structures.   The tick
	handler runs at the lowest priority, so interrupts cannot already be masked,
	so there is no need to save and restore the current mask value.  It is
	necessary to turn off interrupts in the CPU itself while the ICCPMR is being
	updated. */
#if defined(GICv2)
		portICCPMR_PRIORITY_MASK_REGISTER = ( uint32_t ) ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT );
#else
		mtcp(S3_0_C4_C6_0, ( uint32_t ) ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ));
#endif
		__asm volatile (	"dsb sy		\n"
							"isb sy		\n" ::: "memory" );

		/* Ok to enable interrupts after the interrupt source has been cleared. */
		configCLEAR_TICK_INTERRUPT();
		portENABLE_INTERRUPTS();

		/* Increment the RTOS tick. */
		if( xTaskIncrementTick() != pdFALSE )
		{
			ullPortYieldRequired = pdTRUE;
		}
	}

	/* Ensure all interrupt priorities are active again. */
	portCLEAR_INTERRUPT_MASK();
}
/*-----------------------------------------------------------*/
#if( configUSE_TASK_FPU_SUPPORT != 2 )
void vPortTaskUsesFPU( void )
{
	/* A task is registering the fact that it needs an FPU context.  Set the
	FPU flag (which is saved as part of the task context). */
	ullPortTaskHasFPUContext = pdTRUE;

	/* Consider initialising the FPSR here - but probably not necessary in
	AArch64. */
}
#endif /* configUSE_TASK_FPU_SUPPORT */
/*-----------------------------------------------------------*/

void vPortClearInterruptMask( UBaseType_t uxNewMaskValue )
{
	if( uxNewMaskValue == pdFALSE )
	{
		portCLEAR_INTERRUPT_MASK();
	}
}
/*-----------------------------------------------------------*/

UBaseType_t uxPortSetInterruptMask( void )
{
uint32_t ulReturn;
uint32_t mask;

	if (lInterruptControllerInitialised == pdTRUE) {
		/* Interrupt in the CPU must be turned off while the ICCPMR is being
		updated. */
		portDISABLE_INTERRUPTS();
#if defined(GICv2)
		mask = portICCPMR_PRIORITY_MASK_REGISTER;
#else
		mask = mfcp(S3_0_C4_C6_0);
#endif
		if( mask == ( uint32_t ) ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ) )
		{
			/* Interrupts were already masked. */
			ulReturn = pdTRUE;
		}
		else
		{
			ulReturn = pdFALSE;
#if defined(GICv2)
			portICCPMR_PRIORITY_MASK_REGISTER = ( uint32_t ) ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT );
#else
			mtcp(S3_0_C4_C6_0, ( uint32_t ) ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ));
#endif
			__asm volatile (	"dsb sy		\n"
								"isb sy		\n" ::: "memory" );
		}
		portENABLE_INTERRUPTS();
	} else {
		ulReturn = pdTRUE;
	}
	return ulReturn;
}
/*-----------------------------------------------------------*/

static void prvTaskExitError( void )
{
	/* A function that implements a task must not exit or attempt to return to
	its caller as there is nothing to return to.  If a task wants to exit it
	should instead call vTaskDelete( NULL ) */
	xil_printf("Warning: return statement has been called from task %s, deleting it\n",pcTaskGetName(NULL));
	if (uxTaskGetNumberOfTasks() == 2)
	{
		xil_printf("Warning: Kernel does not have any task to manage other than idle task\n");
	}
	vTaskDelete( NULL );
}
/*-----------------------------------------------------------*/
#if( configASSERT_DEFINED == 1 )

	void vPortValidateInterruptPriority( void )
	{
#if defined(GICv3)
		unsigned int ulRpr;
		unsigned int ulBpr;
#endif
		/* The following assertion will fail if a service routine (ISR) for
		an interrupt that has been assigned a priority above
		configMAX_SYSCALL_INTERRUPT_PRIORITY calls an ISR safe FreeRTOS API
		function.  ISR safe FreeRTOS API functions must *only* be called
		from interrupts that have been assigned a priority at or below
		configMAX_SYSCALL_INTERRUPT_PRIORITY.

		Numerically low interrupt priority numbers represent logically high
		interrupt priorities, therefore the priority of the interrupt must
		be set to a value equal to or numerically *higher* than
		configMAX_SYSCALL_INTERRUPT_PRIORITY.

		FreeRTOS maintains separate thread and ISR API functions to ensure
		interrupt entry is as fast and simple as possible. */
#if defined(GICv2)
		configASSERT( portICCRPR_RUNNING_PRIORITY_REGISTER >= ( uint32_t ) ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ) );
#else
		ulRpr = mfcp(S3_0_C12_C11_3);
		configASSERT( ulRpr >= ( uint32_t ) ( configMAX_API_CALL_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ) );
#endif
		/* Priority grouping:  The interrupt controller (GIC) allows the bits
		that define each interrupt's priority to be split between bits that
		define the interrupt's pre-emption priority bits and bits that define
		the interrupt's sub-priority.  For simplicity all bits must be defined
		to be pre-emption priority bits.  The following assertion will fail if
		this is not the case (if some bits represent a sub-priority).

		The priority grouping is configured by the GIC's binary point register
		(ICCBPR).  Writing 0 to ICCBPR will ensure it is set to its lowest
		possible value (which may be above 0). */
#if defined(GICv2)
		configASSERT( ( portICCBPR_BINARY_POINT_REGISTER & portBINARY_POINT_BITS ) <= portMAX_BINARY_POINT_VALUE );
#else
		ulBpr = mfcp(S3_0_C12_C8_3);
		configASSERT( ( ulBpr & portBINARY_POINT_BITS ) <= portMAX_BINARY_POINT_VALUE );
#endif
	}

#endif /* configASSERT_DEFINED */
/*-----------------------------------------------------------*/

#if( configGENERATE_RUN_TIME_STATS == 1 )
/*
 * For Xilinx implementation this is a dummy function that does a redundant operation
 * of zeroing out the global counter.
 * It is called by FreeRTOS kernel.
 */
void xCONFIGURE_TIMER_FOR_RUN_TIME_STATS (void)
{
	ulHighFrequencyTimerTicks = 0;
}
/*
 * For Xilinx implementation this function returns the global counter used for
 * run time task stats calculation.
 * It is called by FreeRTOS kernel task handling logic.
 */
uint32_t xGET_RUN_TIME_COUNTER_VALUE (void)
{
	return ulHighFrequencyTimerTicks;
}
#endif
========================================================================

Thank you for sharing the file.

The above message tells us that the assert at line #658 in the port.c file is failing. When we look at line #658 in the port.c file, it is the following:

configASSERT( portICCRPR_RUNNING_PRIORITY_REGISTER == ( uint32_t ) ( portLOWEST_USABLE_INTERRUPT_PRIORITY << portPRIORITY_SHIFT ) );

And the comment above that line is -

/* Must be the lowest possible priority. */

Which means that you need to change the priority of the tick interrupt to the lowest.

Does this issue have anything to do with Linux interrupts? Because when only the A53 runs FreeRTOS, there is no problem, but when Linux boots up, an assert occurs.

portLOWEST_USABLE_INTERRUPT_PRIORITY => 0

portLOWEST_USABLE_INTERRUPT_PRIORITY => 256

I have made the changes, but I am still getting an interrupt assert.

I do not know that part and you need to understand the hardware and Linux configuration about how that effect interrupts.

Yes, I am aware. I am also having a hard time finding a definitive answer to this issue even after checking Xilinx’s datasheet. The reason being that there is not much detailed information available on how GIC400 is being used in Linux. What can be done in Linux is to disable devices in the device tree, but that’s about it.

I have changed portLOWEST_USABLE_INTERRUPT_PRIORITY to 256 to set the priority of the tick interrupt to the lowest possible value, but the same problem still occurs. I will share the source code with you.

Portmacro.h :
/* The number of bits to shift for an interrupt priority is dependent on the
number of bits implemented by the interrupt controller. */

#if configUNIQUE_INTERRUPT_PRIORITIES == 16
#define portPRIORITY_SHIFT 4
#define portMAX_BINARY_POINT_VALUE 3
#elif configUNIQUE_INTERRUPT_PRIORITIES == 32
#define portPRIORITY_SHIFT 3
#define portMAX_BINARY_POINT_VALUE 2
#elif configUNIQUE_INTERRUPT_PRIORITIES == 64
#define portPRIORITY_SHIFT 2
#define portMAX_BINARY_POINT_VALUE 1
#elif configUNIQUE_INTERRUPT_PRIORITIES == 128
#define portPRIORITY_SHIFT 1
#define portMAX_BINARY_POINT_VALUE 0
#elif configUNIQUE_INTERRUPT_PRIORITIES == 256
#define portPRIORITY_SHIFT 0
#define portMAX_BINARY_POINT_VALUE 0
#else
#error Invalid configUNIQUE_INTERRUPT_PRIORITIES setting. configUNIQUE_INTERRUPT_PRIORITIES must be set to the number of unique priorities implemented by the target hardware
#endif