/* * Some constants, hardware definitions and comments taken from ST's HAL driver * library, COPYRIGHT(c) 2015 STMicroelectronics. */ /* FreeRTOS+TCP V2.0.11 Copyright (C) 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. http://aws.amazon.com/freertos http://www.FreeRTOS.org */ /* Standard includes. */ #include #include #include /* FreeRTOS includes. */ #include "FreeRTOS.h" #include "task.h" #include "queue.h" #include "semphr.h" /* FreeRTOS+TCP includes. */ #include "FreeRTOS_IP.h" #include "FreeRTOS_Sockets.h" #include "FreeRTOS_IP_Private.h" #include "FreeRTOS_DNS.h" #include "FreeRTOS_ARP.h" #include "NetworkBufferManagement.h" #include "NetworkInterface.h" #include "phyHandling.h" #define STM32F7xx /* ST includes. */ #if defined( STM32F7xx ) #include "stm32f7xx_hal.h" #elif defined( STM32F4xx ) #include "stm32f4xx_hal.h" #elif defined( STM32F2xx ) #include "stm32f2xx_hal.h" #elif !defined( _lint ) /* Lint does not like an #error */ #error What part? #endif #include "stm32fxx_hal_eth.h" /* Interrupt events to process. Currently only the Rx event is processed although code for other events is included to allow for possible future expansion. */ #define EMAC_IF_RX_EVENT 1UL #define EMAC_IF_TX_EVENT 2UL #define EMAC_IF_ERR_EVENT 4UL #define EMAC_IF_ALL_EVENT ( EMAC_IF_RX_EVENT | EMAC_IF_TX_EVENT | EMAC_IF_ERR_EVENT ) #define ETH_DMA_ALL_INTS \ ( ETH_DMA_IT_TST | ETH_DMA_IT_PMT | ETH_DMA_IT_MMC | ETH_DMA_IT_NIS | ETH_DMA_IT_ER | \ ETH_DMA_IT_FBE | ETH_DMA_IT_RWT | ETH_DMA_IT_RPS | ETH_DMA_IT_RBU | ETH_DMA_IT_R | \ ETH_DMA_IT_TU | ETH_DMA_IT_RO | ETH_DMA_IT_TJT | ETH_DMA_IT_TPS | ETH_DMA_IT_T ) #ifndef niEMAC_HANDLER_TASK_PRIORITY #define niEMAC_HANDLER_TASK_PRIORITY configMAX_PRIORITIES - 1 #endif #define ipFRAGMENT_OFFSET_BIT_MASK ( ( uint16_t ) 0x0fff ) /* The bits in the two byte IP header field that make up the fragment offset value. */ #if( ( ipconfigDRIVER_INCLUDED_TX_IP_CHECKSUM == 0 ) || ( ipconfigDRIVER_INCLUDED_RX_IP_CHECKSUM == 0 ) ) #warning Consider enabling checksum offloading #endif #ifndef niDESCRIPTOR_WAIT_TIME_MS #define niDESCRIPTOR_WAIT_TIME_MS 250uL #endif /* * Most users will want a PHY that negotiates about * the connection properties: speed, dmix and duplex. * On some rare cases, you want to select what is being * advertised, properties like MDIX and duplex. */ #if !defined( ipconfigETHERNET_AN_ENABLE ) /* Enable auto-negotiation */ #define ipconfigETHERNET_AN_ENABLE 1 #endif #if !defined( ipconfigETHERNET_AUTO_CROSS_ENABLE ) #define ipconfigETHERNET_AUTO_CROSS_ENABLE 1 #endif #if( ipconfigETHERNET_AN_ENABLE == 0 ) /* * The following three defines are only used in case there * is no auto-negotiation. */ #if !defined( ipconfigETHERNET_CROSSED_LINK ) #define ipconfigETHERNET_CROSSED_LINK 1 #endif #if !defined( ipconfigETHERNET_USE_100MB ) #define ipconfigETHERNET_USE_100MB 1 #endif #if !defined( ipconfigETHERNET_USE_FULL_DUPLEX ) #define ipconfigETHERNET_USE_FULL_DUPLEX 1 #endif #endif /* ipconfigETHERNET_AN_ENABLE == 0 */ /* Default the size of the stack used by the EMAC deferred handler task to twice the size of the stack used by the idle task - but allow this to be overridden in FreeRTOSConfig.h as configMINIMAL_STACK_SIZE is a user definable constant. */ #ifndef configEMAC_TASK_STACK_SIZE #define configEMAC_TASK_STACK_SIZE ( 2 * configMINIMAL_STACK_SIZE ) #endif /* Two choices must be made: RMII versus MII, and the index of the PHY in use ( between 0 and 31 ). */ #ifndef ipconfigUSE_RMII #ifdef STM32F7xx #define ipconfigUSE_RMII 1 #else #define ipconfigUSE_RMII 0 #endif /* STM32F7xx */ #endif /* ipconfigUSE_RMII */ #if( ipconfigUSE_RMII != 0 ) #warning Using RMII, make sure if this is correct #else #warning Using MII, make sure if this is correct #endif typedef enum { eMACInit, /* Must initialise MAC. */ eMACPass, /* Initialisation was successful. */ eMACFailed, /* Initialisation failed. */ } eMAC_INIT_STATUS_TYPE; static eMAC_INIT_STATUS_TYPE xMacInitStatus = eMACInit; /*-----------------------------------------------------------*/ /* * A deferred interrupt handler task that processes */ static void prvEMACHandlerTask( void *pvParameters ); /* * Force a negotiation with the Switch or Router and wait for LS. */ static void prvEthernetUpdateConfig( BaseType_t xForce ); /* * See if there is a new packet and forward it to the IP-task. */ static BaseType_t prvNetworkInterfaceInput( void ); #if( ipconfigUSE_LLMNR != 0 ) /* * For LLMNR, an extra MAC-address must be configured to * be able to receive the multicast messages. */ static void prvMACAddressConfig(ETH_HandleTypeDef *heth, uint32_t ulIndex, uint8_t *Addr); #endif /* * Check if a given packet should be accepted. */ static BaseType_t xMayAcceptPacket( uint8_t *pcBuffer ); /* * Initialise the TX descriptors. */ static void prvDMATxDescListInit( void ); /* * Initialise the RX descriptors. */ static void prvDMARxDescListInit( void ); /* After packets have been sent, the network buffers will be released. */ static void vClearTXBuffers( void ); /*-----------------------------------------------------------*/ /* Bit map of outstanding ETH interrupt events for processing. Currently only the Rx interrupt is handled, although code is included for other events to enable future expansion. */ static volatile uint32_t ulISREvents; #if( ipconfigUSE_LLMNR == 1 ) static const uint8_t xLLMNR_MACAddress[] = { 0x01, 0x00, 0x5E, 0x00, 0x00, 0xFC }; #endif static EthernetPhy_t xPhyObject; /* Ethernet handle. */ static ETH_HandleTypeDef xETH; /* xTXDescriptorSemaphore is a counting semaphore with a maximum count of ETH_TXBUFNB, which is the number of DMA TX descriptors. */ static SemaphoreHandle_t xTXDescriptorSemaphore = NULL; /* * Note: it is adviced to define both * * #define ipconfigZERO_COPY_RX_DRIVER 1 * #define ipconfigZERO_COPY_TX_DRIVER 1 * * The method using memcpy is slower and probaly uses more RAM memory. * The possibility is left in the code just for comparison. * * It is adviced to define ETH_TXBUFNB at least 4. Note that no * TX buffers are allocated in a zero-copy driver. */ /* MAC buffers: ---------------------------------------------------------*/ /* Put the DMA descriptors in '.first_data'. This is important for STM32F7, which has an L1 data cache. The first 64KB of the SRAM is not cached. See README.TXT in this folder. */ /* Ethernet Rx MA Descriptor */ __attribute__ ((aligned (32))) #if defined(STM32F7xx) __attribute__ ((section(".first_data"))) #endif ETH_DMADescTypeDef DMARxDscrTab[ ETH_RXBUFNB ]; #if( ipconfigZERO_COPY_RX_DRIVER == 0 ) /* Ethernet Receive Buffer */ __ALIGN_BEGIN uint8_t Rx_Buff[ ETH_RXBUFNB ][ ETH_RX_BUF_SIZE ] __ALIGN_END; #endif /* Ethernet Tx DMA Descriptor */ __attribute__ ((aligned (32))) #if defined(STM32F7xx) __attribute__ ((section(".first_data"))) #endif ETH_DMADescTypeDef DMATxDscrTab[ ETH_TXBUFNB ]; #if( ipconfigZERO_COPY_TX_DRIVER == 0 ) /* Ethernet Transmit Buffer */ __ALIGN_BEGIN uint8_t Tx_Buff[ ETH_TXBUFNB ][ ETH_TX_BUF_SIZE ] __ALIGN_END; #endif /* DMATxDescToClear points to the next TX DMA descriptor that must be cleared by vClearTXBuffers(). */ static __IO ETH_DMADescTypeDef *DMATxDescToClear; /* Holds the handle of the task used as a deferred interrupt processor. The handle is used so direct notifications can be sent to the task for all EMAC/DMA related interrupts. */ static TaskHandle_t xEMACTaskHandle = NULL; /* For local use only: describe the PHY's properties: */ const PhyProperties_t xPHYProperties = { #if( ipconfigETHERNET_AN_ENABLE != 0 ) .ucSpeed = PHY_SPEED_AUTO, .ucDuplex = PHY_DUPLEX_AUTO, #else #if( ipconfigETHERNET_USE_100MB != 0 ) .ucSpeed = PHY_SPEED_100, #else .ucSpeed = PHY_SPEED_10, #endif #if( ipconfigETHERNET_USE_FULL_DUPLEX != 0 ) .ucDuplex = PHY_DUPLEX_FULL, #else .ucDuplex = PHY_DUPLEX_HALF, #endif #endif #if( ipconfigETHERNET_AN_ENABLE != 0 ) && ( ipconfigETHERNET_AUTO_CROSS_ENABLE != 0 ) .ucMDI_X = PHY_MDIX_AUTO, #elif( ipconfigETHERNET_CROSSED_LINK != 0 ) .ucMDI_X = PHY_MDIX_CROSSED, #else .ucMDI_X = PHY_MDIX_DIRECT, #endif }; /*-----------------------------------------------------------*/ void HAL_ETH_RxCpltCallback( ETH_HandleTypeDef *heth ) { BaseType_t xHigherPriorityTaskWoken = pdFALSE; ( void ) heth; /* Ethernet RX-Complete callback function, elsewhere declared as weak. */ ulISREvents |= EMAC_IF_RX_EVENT; /* Wakeup the prvEMACHandlerTask. */ if( xEMACTaskHandle != NULL ) { vTaskNotifyGiveFromISR( xEMACTaskHandle, &xHigherPriorityTaskWoken ); portYIELD_FROM_ISR( xHigherPriorityTaskWoken ); } } /*-----------------------------------------------------------*/ void HAL_ETH_TxCpltCallback( ETH_HandleTypeDef *heth ) { BaseType_t xHigherPriorityTaskWoken = pdFALSE; ( void ) heth; /* This call-back is only useful in case packets are being sent zero-copy. Once they're sent, the buffers will be released by the function vClearTXBuffers(). */ ulISREvents |= EMAC_IF_TX_EVENT; /* Wakeup the prvEMACHandlerTask. */ if( xEMACTaskHandle != NULL ) { vTaskNotifyGiveFromISR( xEMACTaskHandle, &xHigherPriorityTaskWoken ); portYIELD_FROM_ISR( xHigherPriorityTaskWoken ); } } /*-----------------------------------------------------------*/ static void vClearTXBuffers() { __IO ETH_DMADescTypeDef *txLastDescriptor = xETH.TxDesc; size_t uxCount = ( ( UBaseType_t ) ETH_TXBUFNB ) - uxSemaphoreGetCount( xTXDescriptorSemaphore ); #if( ipconfigZERO_COPY_TX_DRIVER != 0 ) NetworkBufferDescriptor_t *pxNetworkBuffer; uint8_t *ucPayLoad; #endif /* This function is called after a TX-completion interrupt. It will release each Network Buffer used in xNetworkInterfaceOutput(). 'uxCount' represents the number of descriptors given to DMA for transmission. After sending a packet, the DMA will clear the 'ETH_DMATXDESC_OWN' bit. */ while( ( uxCount > 0 ) && ( ( DMATxDescToClear->Status & ETH_DMATXDESC_OWN ) == 0 ) ) { if( ( DMATxDescToClear == txLastDescriptor ) && ( uxCount != ETH_TXBUFNB ) ) { break; } #if( ipconfigZERO_COPY_TX_DRIVER != 0 ) { ucPayLoad = ( uint8_t * )DMATxDescToClear->Buffer1Addr; if( ucPayLoad != NULL ) { pxNetworkBuffer = pxPacketBuffer_to_NetworkBuffer( ucPayLoad ); if( pxNetworkBuffer != NULL ) { vReleaseNetworkBufferAndDescriptor( pxNetworkBuffer ) ; } DMATxDescToClear->Buffer1Addr = ( uint32_t )0u; } } #endif /* ipconfigZERO_COPY_TX_DRIVER */ DMATxDescToClear = ( ETH_DMADescTypeDef * )( DMATxDescToClear->Buffer2NextDescAddr ); uxCount--; /* Tell the counting semaphore that one more TX descriptor is available. */ xSemaphoreGive( xTXDescriptorSemaphore ); } } /*-----------------------------------------------------------*/ BaseType_t xNetworkInterfaceInitialise( void ) { HAL_StatusTypeDef hal_eth_init_status; BaseType_t xResult; if( xMacInitStatus == eMACInit ) { xTXDescriptorSemaphore = xSemaphoreCreateCounting( ( UBaseType_t ) ETH_TXBUFNB, ( UBaseType_t ) ETH_TXBUFNB ); if( xTXDescriptorSemaphore == NULL ) { xMacInitStatus = eMACFailed; } else { /* Initialise ETH */ xETH.Instance = ETH; xETH.Init.AutoNegotiation = ETH_AUTONEGOTIATION_ENABLE; xETH.Init.Speed = ETH_SPEED_100M; xETH.Init.DuplexMode = ETH_MODE_FULLDUPLEX; /* Value of PhyAddress doesn't matter, will be probed for. */ xETH.Init.PhyAddress = 0; xETH.Init.MACAddr = ( uint8_t * ) FreeRTOS_GetMACAddress(); xETH.Init.RxMode = ETH_RXINTERRUPT_MODE; #if( ipconfigDRIVER_INCLUDED_TX_IP_CHECKSUM != 0 ) { /* using the ETH_CHECKSUM_BY_HARDWARE option: both the IP and the protocol checksums will be calculated by the peripheral. */ xETH.Init.ChecksumMode = ETH_CHECKSUM_BY_HARDWARE; } #else { xETH.Init.ChecksumMode = ETH_CHECKSUM_BY_SOFTWARE; } #endif #if( ipconfigUSE_RMII != 0 ) { xETH.Init.MediaInterface = ETH_MEDIA_INTERFACE_RMII; } #else { xETH.Init.MediaInterface = ETH_MEDIA_INTERFACE_MII; } #endif /* ipconfigUSE_RMII */ hal_eth_init_status = HAL_ETH_Init( &xETH ); /* Only for inspection by debugger. */ ( void ) hal_eth_init_status; /* Set the TxDesc and RxDesc pointers. */ xETH.TxDesc = DMATxDscrTab; xETH.RxDesc = DMARxDscrTab; /* Make sure that all unused fields are cleared. */ memset( &DMATxDscrTab, '\0', sizeof( DMATxDscrTab ) ); memset( &DMARxDscrTab, '\0', sizeof( DMARxDscrTab ) ); /* Initialize Tx Descriptors list: Chain Mode */ DMATxDescToClear = DMATxDscrTab; /* Initialise TX-descriptors. */ prvDMATxDescListInit(); /* Initialise RX-descriptors. */ prvDMARxDescListInit(); #if( ipconfigUSE_LLMNR != 0 ) { /* Program the LLMNR address at index 1. */ prvMACAddressConfig( &xETH, ETH_MAC_ADDRESS1, ( uint8_t *) xLLMNR_MACAddress ); } #endif /* Force a negotiation with the Switch or Router and wait for LS. */ prvEthernetUpdateConfig( pdTRUE ); /* The deferred interrupt handler task is created at the highest possible priority to ensure the interrupt handler can return directly to it. The task's handle is stored in xEMACTaskHandle so interrupts can notify the task when there is something to process. */ if( xTaskCreate( prvEMACHandlerTask, "EMAC", configEMAC_TASK_STACK_SIZE, NULL, niEMAC_HANDLER_TASK_PRIORITY, &xEMACTaskHandle ) == pdPASS ) { /* The xTXDescriptorSemaphore and the task are created successfully. */ xMacInitStatus = eMACPass; } else { xMacInitStatus = eMACFailed; } } } /* if( xEMACTaskHandle == NULL ) */ if( xMacInitStatus != eMACPass ) { /* EMAC initialisation failed, return pdFAIL. */ xResult = pdFAIL; } else { if( xPhyObject.ulLinkStatusMask != 0uL ) { xETH.Instance->DMAIER |= ETH_DMA_ALL_INTS; xResult = pdPASS; FreeRTOS_printf( ( "Link Status is high\n" ) ) ; } else { /* For now pdFAIL will be returned. But prvEMACHandlerTask() is running and it will keep on checking the PHY and set 'ulLinkStatusMask' when necessary. */ xResult = pdFAIL; } } /* When returning non-zero, the stack will become active and start DHCP (in configured) */ return xResult; } /*-----------------------------------------------------------*/ static void prvDMATxDescListInit() { ETH_DMADescTypeDef *pxDMADescriptor; BaseType_t xIndex; /* Get the pointer on the first member of the descriptor list */ pxDMADescriptor = DMATxDscrTab; /* Fill each DMA descriptor with the right values */ for( xIndex = 0; xIndex < ETH_TXBUFNB; xIndex++, pxDMADescriptor++ ) { /* Set Second Address Chained bit */ pxDMADescriptor->Status = ETH_DMATXDESC_TCH; #if( ipconfigZERO_COPY_TX_DRIVER == 0 ) { /* Set Buffer1 address pointer */ pxDMADescriptor->Buffer1Addr = ( uint32_t )( Tx_Buff[ xIndex ] ); } #endif if( xETH.Init.ChecksumMode == ETH_CHECKSUM_BY_HARDWARE ) { /* Set the DMA Tx descriptors checksum insertion for TCP, UDP, and ICMP */ pxDMADescriptor->Status |= ETH_DMATXDESC_CHECKSUMTCPUDPICMPFULL; } else { pxDMADescriptor->Status &= ~( ( uint32_t ) ETH_DMATXDESC_CHECKSUMTCPUDPICMPFULL ); } /* Initialize the next descriptor with the Next Descriptor Polling Enable */ if( xIndex < ETH_TXBUFNB - 1 ) { /* Set next descriptor address register with next descriptor base address */ pxDMADescriptor->Buffer2NextDescAddr = ( uint32_t ) ( pxDMADescriptor + 1 ); } else { /* For last descriptor, set next descriptor address register equal to the first descriptor base address */ pxDMADescriptor->Buffer2NextDescAddr = ( uint32_t ) DMATxDscrTab; } } /* Set Transmit Descriptor List Address Register */ xETH.Instance->DMATDLAR = ( uint32_t ) DMATxDscrTab; } /*-----------------------------------------------------------*/ static void prvDMARxDescListInit() { ETH_DMADescTypeDef *pxDMADescriptor; BaseType_t xIndex; /* * RX-descriptors. */ /* Get the pointer on the first member of the descriptor list */ pxDMADescriptor = DMARxDscrTab; /* Fill each DMA descriptor with the right values */ for( xIndex = 0; xIndex < ETH_RXBUFNB; xIndex++, pxDMADescriptor++ ) { /* Set Buffer1 size and Second Address Chained bit */ pxDMADescriptor->ControlBufferSize = ETH_DMARXDESC_RCH | (uint32_t)ETH_RX_BUF_SIZE; #if( ipconfigZERO_COPY_RX_DRIVER != 0 ) { /* Set Buffer1 address pointer */ NetworkBufferDescriptor_t *pxBuffer; pxBuffer = pxGetNetworkBufferWithDescriptor( ETH_RX_BUF_SIZE, 100ul ); /* If the assert below fails, make sure that there are at least 'ETH_RXBUFNB' Network Buffers available during start-up ( ipconfigNUM_NETWORK_BUFFER_DESCRIPTORS ) */ configASSERT( pxBuffer != NULL ); if( pxBuffer != NULL ) { pxDMADescriptor->Buffer1Addr = (uint32_t)pxBuffer->pucEthernetBuffer; pxDMADescriptor->Status = ETH_DMARXDESC_OWN; } } #else { /* Set Buffer1 address pointer */ pxDMADescriptor->Buffer1Addr = ( uint32_t )( Rx_Buff[ xIndex ] ); /* Set Own bit of the Rx descriptor Status */ pxDMADescriptor->Status = ETH_DMARXDESC_OWN; } #endif /* Initialize the next descriptor with the Next Descriptor Polling Enable */ if( xIndex < ETH_RXBUFNB - 1 ) { /* Set next descriptor address register with next descriptor base address */ pxDMADescriptor->Buffer2NextDescAddr = ( uint32_t )( pxDMADescriptor + 1 ); } else { /* For last descriptor, set next descriptor address register equal to the first descriptor base address */ pxDMADescriptor->Buffer2NextDescAddr = ( uint32_t ) DMARxDscrTab; } } /* Set Receive Descriptor List Address Register */ xETH.Instance->DMARDLAR = ( uint32_t ) DMARxDscrTab; } /*-----------------------------------------------------------*/ static void prvMACAddressConfig(ETH_HandleTypeDef *heth, uint32_t ulIndex, uint8_t *Addr) { uint32_t ulTempReg; ( void ) heth; /* Calculate the selected MAC address high register. */ ulTempReg = 0x80000000ul | ( ( uint32_t ) Addr[ 5 ] << 8 ) | ( uint32_t ) Addr[ 4 ]; /* Load the selected MAC address high register. */ ( *(__IO uint32_t *)( ( uint32_t ) ( ETH_MAC_ADDR_HBASE + ulIndex ) ) ) = ulTempReg; /* Calculate the selected MAC address low register. */ ulTempReg = ( ( uint32_t ) Addr[ 3 ] << 24 ) | ( ( uint32_t ) Addr[ 2 ] << 16 ) | ( ( uint32_t ) Addr[ 1 ] << 8 ) | Addr[ 0 ]; /* Load the selected MAC address low register */ ( *(__IO uint32_t *) ( ( uint32_t ) ( ETH_MAC_ADDR_LBASE + ulIndex ) ) ) = ulTempReg; } /*-----------------------------------------------------------*/ BaseType_t xNetworkInterfaceOutput( NetworkBufferDescriptor_t * const pxDescriptor, BaseType_t bReleaseAfterSend ) { BaseType_t xReturn = pdFAIL; uint32_t ulTransmitSize = 0; __IO ETH_DMADescTypeDef *pxDmaTxDesc; /* Do not wait too long for a free TX DMA buffer. */ const TickType_t xBlockTimeTicks = pdMS_TO_TICKS( 50u ); /* Open a do {} while ( 0 ) loop to be able to call break. */ do { #if( ipconfigDRIVER_INCLUDED_TX_IP_CHECKSUM != 0 ) { ProtocolPacket_t *pxPacket; /* If the peripheral must calculate the checksum, it wants the protocol checksum to have a value of zero. */ pxPacket = ( ProtocolPacket_t * ) ( pxDescriptor->pucEthernetBuffer ); if( pxPacket->xICMPPacket.xIPHeader.ucProtocol == ( uint8_t ) ipPROTOCOL_ICMP ) { pxPacket->xICMPPacket.xICMPHeader.usChecksum = ( uint16_t )0u; } } #endif /* ipconfigDRIVER_INCLUDED_TX_IP_CHECKSUM */ if( xPhyObject.ulLinkStatusMask != 0 ) { if( xSemaphoreTake( xTXDescriptorSemaphore, xBlockTimeTicks ) != pdPASS ) { /* Time-out waiting for a free TX descriptor. */ break; } /* This function does the actual transmission of the packet. The packet is contained in 'pxDescriptor' that is passed to the function. */ pxDmaTxDesc = xETH.TxDesc; /* Is this buffer available? */ configASSERT ( ( pxDmaTxDesc->Status & ETH_DMATXDESC_OWN ) == 0 ); { /* Is this buffer available? */ /* Get bytes in current buffer. */ ulTransmitSize = pxDescriptor->xDataLength; if( ulTransmitSize > ETH_TX_BUF_SIZE ) { ulTransmitSize = ETH_TX_BUF_SIZE; } #if( ipconfigZERO_COPY_TX_DRIVER == 0 ) { /* Copy the bytes. */ memcpy( ( void * ) pxDmaTxDesc->Buffer1Addr, pxDescriptor->pucEthernetBuffer, ulTransmitSize ); } #else { configASSERT( bReleaseAfterSend != 0 ); /* Move the buffer. */ pxDmaTxDesc->Buffer1Addr = ( uint32_t )pxDescriptor->pucEthernetBuffer; /* The Network Buffer has been passed to DMA, no need to release it. */ bReleaseAfterSend = pdFALSE_UNSIGNED; } #endif /* ipconfigZERO_COPY_TX_DRIVER */ /* Ask to set the IPv4 checksum. Also need an Interrupt on Completion so that 'vClearTXBuffers()' will be called.. */ #if( ipconfigDRIVER_INCLUDED_TX_IP_CHECKSUM != 0 ) { pxDmaTxDesc->Status |= ETH_DMATXDESC_CIC_TCPUDPICMP_FULL | ETH_DMATXDESC_IC; } #else { pxDmaTxDesc->Status &= ~( ( uint32_t ) ETH_DMATXDESC_CIC ); pxDmaTxDesc->Status |= ETH_DMATXDESC_IC; } #endif /* Prepare transmit descriptors to give to DMA. */ /* Set LAST and FIRST segment */ pxDmaTxDesc->Status |= ETH_DMATXDESC_FS | ETH_DMATXDESC_LS; /* Set frame size */ pxDmaTxDesc->ControlBufferSize = ( ulTransmitSize & ETH_DMATXDESC_TBS1 ); #if( NETWORK_BUFFERS_CACHED != 0 ) { BaseType_t xlength = CACHE_LINE_SIZE * ( ( ulTransmitSize + NETWORK_BUFFER_HEADER_SIZE + CACHE_LINE_SIZE - 1 ) / CACHE_LINE_SIZE ); uint32_t *pulBuffer = ( uint32_t )( pxDescriptor->pucEthernetBuffer - NETWORK_BUFFER_HEADER_SIZE ); cache_clean_invalidate_by_addr( pulBuffer, xlength ); } #endif /* Set Own bit of the Tx descriptor Status: gives the buffer back to ETHERNET DMA */ pxDmaTxDesc->Status |= ETH_DMATXDESC_OWN; /* Point to next descriptor */ xETH.TxDesc = ( ETH_DMADescTypeDef * ) ( xETH.TxDesc->Buffer2NextDescAddr ); /* Ensure completion of memory access */ __DSB(); /* Resume DMA transmission*/ xETH.Instance->DMATPDR = 0; iptraceNETWORK_INTERFACE_TRANSMIT(); xReturn = pdPASS; } } else { /* The PHY has no Link Status, packet shall be dropped. */ } } while( 0 ); /* The buffer has been sent so can be released. */ if( bReleaseAfterSend != pdFALSE ) { vReleaseNetworkBufferAndDescriptor( pxDescriptor ); } return xReturn; } /*-----------------------------------------------------------*/ static BaseType_t xMayAcceptPacket( uint8_t *pcBuffer ) { const ProtocolPacket_t *pxProtPacket = ( const ProtocolPacket_t * )pcBuffer; switch( pxProtPacket->xTCPPacket.xEthernetHeader.usFrameType ) { case ipARP_FRAME_TYPE: /* Check it later. */ return pdTRUE; case ipIPv4_FRAME_TYPE: /* Check it here. */ break; default: /* Refuse the packet. */ return pdFALSE; } #if( ipconfigETHERNET_DRIVER_FILTERS_PACKETS == 1 ) { const IPHeader_t *pxIPHeader = &(pxProtPacket->xTCPPacket.xIPHeader); uint32_t ulDestinationIPAddress; /* Ensure that the incoming packet is not fragmented (only outgoing packets * can be fragmented) as these are the only handled IP frames currently. */ if( ( pxIPHeader->usFragmentOffset & FreeRTOS_ntohs( ipFRAGMENT_OFFSET_BIT_MASK ) ) != 0U ) { return pdFALSE; } /* HT: Might want to make the following configurable because * most IP messages have a standard length of 20 bytes */ /* 0x45 means: IPv4 with an IP header of 5 x 4 = 20 bytes * 0x47 means: IPv4 with an IP header of 7 x 4 = 28 bytes */ if( pxIPHeader->ucVersionHeaderLength < 0x45 || pxIPHeader->ucVersionHeaderLength > 0x4F ) { return pdFALSE; } ulDestinationIPAddress = pxIPHeader->ulDestinationIPAddress; /* Is the packet for this node? */ if( ( ulDestinationIPAddress != *ipLOCAL_IP_ADDRESS_POINTER ) && /* Is it a broadcast address x.x.x.255 ? */ ( ( FreeRTOS_ntohl( ulDestinationIPAddress ) & 0xff ) != 0xff ) && #if( ipconfigUSE_LLMNR == 1 ) ( ulDestinationIPAddress != ipLLMNR_IP_ADDR ) && #endif ( *ipLOCAL_IP_ADDRESS_POINTER != 0 ) ) { FreeRTOS_printf( ( "Drop IP %lxip\n", FreeRTOS_ntohl( ulDestinationIPAddress ) ) ); return pdFALSE; } if( pxIPHeader->ucProtocol == ipPROTOCOL_UDP ) { uint16_t usSourcePort = FreeRTOS_ntohs( pxProtPacket->xUDPPacket.xUDPHeader.usSourcePort ); uint16_t usDestinationPort = FreeRTOS_ntohs( pxProtPacket->xUDPPacket.xUDPHeader.usDestinationPort ); if( ( xPortHasUDPSocket( pxProtPacket->xUDPPacket.xUDPHeader.usDestinationPort ) == pdFALSE ) #if ipconfigUSE_LLMNR == 1 && ( usDestinationPort != ipLLMNR_PORT ) && ( usSourcePort != ipLLMNR_PORT ) #endif #if ipconfigUSE_NBNS == 1 && ( usDestinationPort != ipNBNS_PORT ) && ( usSourcePort != ipNBNS_PORT ) #endif #if ipconfigUSE_DNS == 1 && ( usSourcePort != ipDNS_PORT ) #endif ) { /* Drop this packet, not for this device. */ FreeRTOS_printf( ( "Drop: UDP port %d -> %d\n", usSourcePort, usDestinationPort ) ); return pdFALSE; } } } #endif /* ipconfigETHERNET_DRIVER_FILTERS_PACKETS */ return pdTRUE; } /*-----------------------------------------------------------*/ static void prvPassEthMessages( NetworkBufferDescriptor_t *pxDescriptor ) { IPStackEvent_t xRxEvent; xRxEvent.eEventType = eNetworkRxEvent; xRxEvent.pvData = ( void * ) pxDescriptor; if( xSendEventStructToIPTask( &xRxEvent, ( TickType_t ) 1000 ) != pdPASS ) { /* The buffer could not be sent to the stack so must be released again. This is a deferred handler taskr, not a real interrupt, so it is ok to use the task level function here. */ #if( ipconfigUSE_LINKED_RX_MESSAGES != 0 ) { do { NetworkBufferDescriptor_t *pxNext = pxDescriptor->pxNextBuffer; vReleaseNetworkBufferAndDescriptor( pxDescriptor ); pxDescriptor = pxNext; } while( pxDescriptor != NULL ); } #else { vReleaseNetworkBufferAndDescriptor( pxDescriptor ); } #endif /* ipconfigUSE_LINKED_RX_MESSAGES */ iptraceETHERNET_RX_EVENT_LOST(); FreeRTOS_printf( ( "prvPassEthMessages: Can not queue return packet!\n" ) ); } else { iptraceNETWORK_INTERFACE_RECEIVE(); } } static BaseType_t prvNetworkInterfaceInput( void ) { NetworkBufferDescriptor_t *pxCurDescriptor; NetworkBufferDescriptor_t *pxNewDescriptor = NULL; #if( ipconfigUSE_LINKED_RX_MESSAGES != 0 ) NetworkBufferDescriptor_t *pxFirstDescriptor = NULL; NetworkBufferDescriptor_t *pxLastDescriptor = NULL; #endif BaseType_t xReceivedLength = 0; __IO ETH_DMADescTypeDef *pxDMARxDescriptor; const TickType_t xDescriptorWaitTime = pdMS_TO_TICKS( niDESCRIPTOR_WAIT_TIME_MS ); uint8_t *pucBuffer; pxDMARxDescriptor = xETH.RxDesc; while( ( pxDMARxDescriptor->Status & ETH_DMARXDESC_OWN ) == 0u ) { BaseType_t xAccepted = pdTRUE; /* Get the Frame Length of the received packet: substruct 4 bytes of the CRC */ xReceivedLength = ( ( pxDMARxDescriptor->Status & ETH_DMARXDESC_FL ) >> ETH_DMARXDESC_FRAMELENGTHSHIFT ) - 4; pucBuffer = (uint8_t *) pxDMARxDescriptor->Buffer1Addr; /* Update the ETHERNET DMA global Rx descriptor with next Rx descriptor */ /* Chained Mode */ /* Selects the next DMA Rx descriptor list for next buffer to read */ xETH.RxDesc = ( ETH_DMADescTypeDef* )pxDMARxDescriptor->Buffer2NextDescAddr; /* In order to make the code easier and faster, only packets in a single buffer will be accepted. This can be done by making the buffers large enough to hold a complete Ethernet packet (1536 bytes). Therefore, two sanity checks: */ configASSERT( xReceivedLength <= ETH_RX_BUF_SIZE ); if( ( pxDMARxDescriptor->Status & ( ETH_DMARXDESC_CE | ETH_DMARXDESC_IPV4HCE | ETH_DMARXDESC_FT ) ) != ETH_DMARXDESC_FT ) { /* Not an Ethernet frame-type or a checmsum error. */ xAccepted = pdFALSE; } else { /* See if this packet must be handled. */ xAccepted = xMayAcceptPacket( pucBuffer ); } if( xAccepted != pdFALSE ) { /* The packet wil be accepted, but check first if a new Network Buffer can be obtained. If not, the packet will still be dropped. */ pxNewDescriptor = pxGetNetworkBufferWithDescriptor( ETH_RX_BUF_SIZE, xDescriptorWaitTime ); if( pxNewDescriptor == NULL ) { /* A new descriptor can not be allocated now. This packet will be dropped. */ xAccepted = pdFALSE; } } #if( ipconfigZERO_COPY_RX_DRIVER != 0 ) { /* Find out which Network Buffer was originally passed to the descriptor. */ pxCurDescriptor = pxPacketBuffer_to_NetworkBuffer( pucBuffer ); configASSERT( pxCurDescriptor != NULL ); } #else { /* In this mode, the two descriptors are the same. */ pxCurDescriptor = pxNewDescriptor; if( pxNewDescriptor != NULL ) { /* The packet is acepted and a new Network Buffer was created, copy data to the Network Bufffer. */ memcpy( pxNewDescriptor->pucEthernetBuffer, pucBuffer, xReceivedLength ); } } #endif if( xAccepted != pdFALSE ) { pxCurDescriptor->xDataLength = xReceivedLength; #if( ipconfigUSE_LINKED_RX_MESSAGES != 0 ) { pxCurDescriptor->pxNextBuffer = NULL; if( pxFirstDescriptor == NULL ) { // Becomes the first message pxFirstDescriptor = pxCurDescriptor; } else if( pxLastDescriptor != NULL ) { // Add to the tail pxLastDescriptor->pxNextBuffer = pxCurDescriptor; } pxLastDescriptor = pxCurDescriptor; } #else { prvPassEthMessages( pxCurDescriptor ); } #endif } /* Release descriptors to DMA */ #if( ipconfigZERO_COPY_RX_DRIVER != 0 ) { /* Set Buffer1 address pointer */ if( pxNewDescriptor != NULL ) { pxDMARxDescriptor->Buffer1Addr = (uint32_t)pxNewDescriptor->pucEthernetBuffer; } else { /* The packet was dropped and the same Network Buffer will be used to receive a new packet. */ } } #endif /* ipconfigZERO_COPY_RX_DRIVER */ /* Set Buffer1 size and Second Address Chained bit */ pxDMARxDescriptor->ControlBufferSize = ETH_DMARXDESC_RCH | (uint32_t)ETH_RX_BUF_SIZE; pxDMARxDescriptor->Status = ETH_DMARXDESC_OWN; /* Ensure completion of memory access */ __DSB(); /* When Rx Buffer unavailable flag is set clear it and resume reception. */ if( ( xETH.Instance->DMASR & ETH_DMASR_RBUS ) != 0 ) { /* Clear RBUS ETHERNET DMA flag. */ xETH.Instance->DMASR = ETH_DMASR_RBUS; /* Resume DMA reception. */ xETH.Instance->DMARPDR = 0; } pxDMARxDescriptor = xETH.RxDesc; } #if( ipconfigUSE_LINKED_RX_MESSAGES != 0 ) { if( pxFirstDescriptor != NULL ) { prvPassEthMessages( pxFirstDescriptor ); } } #endif /* ipconfigUSE_LINKED_RX_MESSAGES */ return ( xReceivedLength > 0 ); } /*-----------------------------------------------------------*/ BaseType_t xSTM32_PhyRead( BaseType_t xAddress, BaseType_t xRegister, uint32_t *pulValue ) { uint16_t usPrevAddress = xETH.Init.PhyAddress; BaseType_t xResult; HAL_StatusTypeDef xHALResult; xETH.Init.PhyAddress = xAddress; xHALResult = HAL_ETH_ReadPHYRegister( &xETH, ( uint16_t )xRegister, pulValue ); xETH.Init.PhyAddress = usPrevAddress; if( xHALResult == HAL_OK ) { xResult = 0; } else { xResult = -1; } return xResult; } /*-----------------------------------------------------------*/ BaseType_t xSTM32_PhyWrite( BaseType_t xAddress, BaseType_t xRegister, uint32_t ulValue ) { uint16_t usPrevAddress = xETH.Init.PhyAddress; BaseType_t xResult; HAL_StatusTypeDef xHALResult; xETH.Init.PhyAddress = xAddress; xHALResult = HAL_ETH_WritePHYRegister( &xETH, ( uint16_t )xRegister, ulValue ); xETH.Init.PhyAddress = usPrevAddress; if( xHALResult == HAL_OK ) { xResult = 0; } else { xResult = -1; } return xResult; } /*-----------------------------------------------------------*/ void vMACBProbePhy( void ) { vPhyInitialise( &xPhyObject, xSTM32_PhyRead, xSTM32_PhyWrite ); xPhyDiscover( &xPhyObject ); xPhyConfigure( &xPhyObject, &xPHYProperties ); } /*-----------------------------------------------------------*/ static void prvEthernetUpdateConfig( BaseType_t xForce ) { FreeRTOS_printf( ( "prvEthernetUpdateConfig: LS mask %02lX Force %d\n", xPhyObject.ulLinkStatusMask, ( int )xForce ) ); if( ( xForce != pdFALSE ) || ( xPhyObject.ulLinkStatusMask != 0 ) ) { /* Restart the auto-negotiation. */ if( xETH.Init.AutoNegotiation != ETH_AUTONEGOTIATION_DISABLE ) { xPhyStartAutoNegotiation( &xPhyObject, xPhyGetMask( &xPhyObject ) ); /* Configure the MAC with the Duplex Mode fixed by the auto-negotiation process. */ if( xPhyObject.xPhyProperties.ucDuplex == PHY_DUPLEX_FULL ) { xETH.Init.DuplexMode = ETH_MODE_FULLDUPLEX; } else { xETH.Init.DuplexMode = ETH_MODE_HALFDUPLEX; } /* Configure the MAC with the speed fixed by the auto-negotiation process. */ if( xPhyObject.xPhyProperties.ucSpeed == PHY_SPEED_10 ) { xETH.Init.Speed = ETH_SPEED_10M; } else { xETH.Init.Speed = ETH_SPEED_100M; } } else /* AutoNegotiation Disable */ { /* Check parameters */ assert_param( IS_ETH_SPEED( xETH.Init.Speed ) ); assert_param( IS_ETH_DUPLEX_MODE( xETH.Init.DuplexMode ) ); if( xETH.Init.DuplexMode == ETH_MODE_FULLDUPLEX ) { xPhyObject.xPhyPreferences.ucDuplex = PHY_DUPLEX_HALF; } else { xPhyObject.xPhyPreferences.ucDuplex = PHY_DUPLEX_FULL; } if( xETH.Init.Speed == ETH_SPEED_10M ) { xPhyObject.xPhyPreferences.ucSpeed = PHY_SPEED_10; } else { xPhyObject.xPhyPreferences.ucSpeed = PHY_SPEED_100; } xPhyObject.xPhyPreferences.ucMDI_X = PHY_MDIX_AUTO; /* Use predefined (fixed) configuration. */ xPhyFixedValue( &xPhyObject, xPhyGetMask( &xPhyObject ) ); } /* ETHERNET MAC Re-Configuration */ HAL_ETH_ConfigMAC( &xETH, (ETH_MACInitTypeDef *) NULL); /* Restart MAC interface */ HAL_ETH_Start( &xETH); } else { /* Stop MAC interface */ HAL_ETH_Stop( &xETH ); } } /*-----------------------------------------------------------*/ BaseType_t xGetPhyLinkStatus( void ) { BaseType_t xReturn; if( xPhyObject.ulLinkStatusMask != 0 ) { xReturn = pdPASS; } else { xReturn = pdFAIL; } return xReturn; } /*-----------------------------------------------------------*/ /* Uncomment this in case BufferAllocation_1.c is used. */ void vNetworkInterfaceAllocateRAMToBuffers( NetworkBufferDescriptor_t pxNetworkBuffers[ ipconfigNUM_NETWORK_BUFFER_DESCRIPTORS ] ) { static #if defined(STM32F7xx) __attribute__ ((section(".first_data"))) #endif uint8_t ucNetworkPackets[ ipconfigNUM_NETWORK_BUFFER_DESCRIPTORS * ETH_MAX_PACKET_SIZE ] __attribute__ ( ( aligned( 32 ) ) ); uint8_t *ucRAMBuffer = ucNetworkPackets; uint32_t ul; for( ul = 0; ul < ipconfigNUM_NETWORK_BUFFER_DESCRIPTORS; ul++ ) { pxNetworkBuffers[ ul ].pucEthernetBuffer = ucRAMBuffer + ipBUFFER_PADDING; *( ( unsigned * ) ucRAMBuffer ) = ( unsigned ) ( &( pxNetworkBuffers[ ul ] ) ); ucRAMBuffer += ETH_MAX_PACKET_SIZE; } } /*-----------------------------------------------------------*/ static void prvEMACHandlerTask( void *pvParameters ) { UBaseType_t uxLastMinBufferCount = 0; #if( ipconfigCHECK_IP_QUEUE_SPACE != 0 ) UBaseType_t uxLastMinQueueSpace = 0; #endif UBaseType_t uxCurrentCount; BaseType_t xResult; const TickType_t ulMaxBlockTime = pdMS_TO_TICKS( 100UL ); /* Remove compiler warnings about unused parameters. */ ( void ) pvParameters; for( ;; ) { xResult = 0; uxCurrentCount = uxGetMinimumFreeNetworkBuffers(); if( uxLastMinBufferCount != uxCurrentCount ) { /* The logging produced below may be helpful while tuning +TCP: see how many buffers are in use. */ uxLastMinBufferCount = uxCurrentCount; FreeRTOS_printf( ( "Network buffers: %lu lowest %lu\n", uxGetNumberOfFreeNetworkBuffers(), uxCurrentCount ) ); } if( xTXDescriptorSemaphore != NULL ) { static UBaseType_t uxLowestSemCount = ( UBaseType_t ) ETH_TXBUFNB - 1; uxCurrentCount = uxSemaphoreGetCount( xTXDescriptorSemaphore ); if( uxLowestSemCount > uxCurrentCount ) { uxLowestSemCount = uxCurrentCount; FreeRTOS_printf( ( "TX DMA buffers: lowest %lu\n", uxLowestSemCount ) ); } } #if( ipconfigCHECK_IP_QUEUE_SPACE != 0 ) { uxCurrentCount = uxGetMinimumIPQueueSpace(); if( uxLastMinQueueSpace != uxCurrentCount ) { /* The logging produced below may be helpful while tuning +TCP: see how many buffers are in use. */ uxLastMinQueueSpace = uxCurrentCount; FreeRTOS_printf( ( "Queue space: lowest %lu\n", uxCurrentCount ) ); } } #endif /* ipconfigCHECK_IP_QUEUE_SPACE */ if( ( ulISREvents & EMAC_IF_ALL_EVENT ) == 0 ) { /* No events to process now, wait for the next. */ ulTaskNotifyTake( pdFALSE, ulMaxBlockTime ); } if( ( ulISREvents & EMAC_IF_RX_EVENT ) != 0 ) { ulISREvents &= ~EMAC_IF_RX_EVENT; xResult = prvNetworkInterfaceInput(); } if( ( ulISREvents & EMAC_IF_TX_EVENT ) != 0 ) { /* Code to release TX buffers if zero-copy is used. */ ulISREvents &= ~EMAC_IF_TX_EVENT; /* Check if DMA packets have been delivered. */ vClearTXBuffers(); } if( ( ulISREvents & EMAC_IF_ERR_EVENT ) != 0 ) { /* Future extension: logging about errors that occurred. */ ulISREvents &= ~EMAC_IF_ERR_EVENT; } if( xPhyCheckLinkStatus( &xPhyObject, xResult ) != 0 ) { /* Something has changed to a Link Status, need re-check. */ prvEthernetUpdateConfig( pdFALSE ); } } } /*-----------------------------------------------------------*/ void ETH_IRQHandler( void ) { HAL_ETH_IRQHandler( &xETH ); }